

March 15, 2025 Volume 2 Issue No. 1

The influence of logistics service quality on customer satisfaction and loyalty at Alfamart in Indonesia

Putu Bunga Mutiara Melinda¹, Siti Rahayu¹, Adi Prasetyo Tedjakusuma²

¹Faculty of Business and Economics, University of Surahaya, Surahaya
²Department of Business Administration, Chaoyang University of Technology, Taichung, Taiwan
Corresponding author: Siti Rahayu, s_rahayu@staff.ubaya.ac.id

Abstract. This study aims to determine the relationship between logistics service quality, customer satisfaction, and loyalty in customers using Alfamart's Buy Online Pick Up in Store (BOPS) shopping service through Alfagift. Data processing was carried out using SPSS 26 and SmartPLS 3. The data used in this study are primary data obtained from distributing questionnaires. Respondents in this study were 250 respondents who had used Alfamart's BOPS shopping service through Alfagift at least 2 times in the past 1 year. The sampling technique in this study was non-probability sampling. Based on the results of hypothesis testing, what affects customer satisfaction is timeliness, while what affects customer loyalty is availability. In this study, customer satisfaction is also significant in influencing customer loyalty.

Keywords: logistics service quality, customer satisfaction, customer loyalty

Introduction

The retail industry in the 4.0 era experienced rapid development, especially in November 2021, marked by an increase in the Real Sales Index (RPI) of 201, up 2.8% from the previous month and 10.8% from the previous year (Setiaji, 2022). Bank Indonesia considers this growth impressive despite fluctuations, with a significant increase from October 2021 to January 2022 (CEIC, 2022). This development is driven by the application of internet technology that enriches the customer shopping experience (Saghiri et al., 2017; Cotarelo et al., 2021). One of them is the Multichannel system that combines various shopping channels, although it often leads to fragmentation of distribution and suboptimal customer interaction (Anderson et al., 2010; Cotarelo et al., 2021). As a result, many companies are turning to Omnichannel, which offers integrated communication between online and offline channels (Beck & Rygl, 2015). Omnichannel makes it easier for customers to purchase and exchange products across both channels, creating a better shopping experience (Cotarelo et al., 2021).

The shopping experience of customers indirectly affects customer expectations to obtain goods and services at minimal cost, this triggers an increase in supply and demand in distribution activities (Greece, 2017). To maximize the services provided, companies can integrate logistics activities into online and offline shopping channels (Peltola et al., 2015). So, it can be concluded that logistics service quality has a very important role because it is the main foundation of the omnichannel strategy (Cotarelo et al., 2021; Bienstock et al., 1997; Mentzer et al., 2001). Logistics service quality in accordance with customer expectations will certainly affect customer satisfaction (Sharma et al., 2019). When customers are satisfied with the logistics services provided by the company, this will indirectly affect customer loyalty to the company. Thus, this topic is very important to research because logistics service quality in an omnichannel environment is the main foundation for a company to obtain success through achieving customer satisfaction and loyalty.

As an integral component of overall service quality, logistics service quality also significantly influences customer satisfaction, which in turn enhances customer loyalty (1). However, despite its importance, literature on logistics service quality, especially in developing countries, remains limited (2). This study aims to address this gap by examining the impacts of logistics service quality within a country facing various logistical challenges, such as Indonesia—a nation composed of numerous islands. Additionally, this research contributes to the literature on logistics service quality in fast-retail environments, particularly by considering the recent integration of Buy BOPS services.

Alfamart is one of the large companies with a total market share of 5,636 million US dollars (Pratama, 2021). Following Alfamart's vision of prioritizing customer expectations and needs to always be fulfilled. Therefore, Alfamart is very focused on developing logistics services to increase customer satisfaction through the Alfagift application service. In Alfagift, Alfamart makes it easy for customers to purchase goods through online applications. Through Alfagift, customers can order goods online and can choose goods to be delivered to the house (BOSD) or be taken directly to the nearest Alfamart (BOPS). In addition, Alfagift is also equipped with interesting features such as rewards in the form of points, shopping promos in the form of vouchers, and application displays that make it easier for customers to find recommended products and determine the location of the nearest Alfamart. In addition to selling daily necessities, Alfamart also serves ticket purchases and installment payments. So, it can be concluded that Alfamart is very concerned about the availability of various products sold on Alfagift. The advantages possessed by Alfamart are strong reasons for making Alfamart the object of research.

Literature Review

Cotarelo et al. (2021) aim to examine Logistics Service Quality through 4 dimensions consisting of timeliness, availability, condition, and return and their effect on customer satisfaction and customer loyalty. Another objective of this study is to analyze the relationship between customer satisfaction and customer loyalty in omnichannel. This research conducted in Spain examines logistics service quality through 3 different channels in omnichannel, such as buy online pick up in store (BOPS), buy in store ship in direct (BSSD), and buy online shipping direct (BOSD). This study uses logistics service quality which consists of 4 dimensions, namely timeliness, availability, conditions, and returns as independent variables. Meanwhile, customer satisfaction and customer loyalty are the dependent variables in this study.

Logistics service quality variables in the BOSD, BOPS, and BSSD channels in the timeliness dimension have a significant positive effect on customer satisfaction variables. For the return dimension, there is a significant positive effect on customer satisfaction variables in the BOSD and BSSD channel models only. Meanwhile, the availability dimension in the logistics service quality variable has an insignificant effect on the customer satisfaction variable in the three-channel models. The results obtained in the three dimensions of the logistics service quality variable assess if the timeliness and return dimensions are the most important dimensions because they have a direct influence on customer satisfaction (Cotarelo et al., 2021). The effect of logistics service quality variables on customer loyalty variables is considered to have significant results in the availability dimension in the BOPS channel model. Meanwhile, the other dimensions and channel models have insignificant results. Beckwith (2017) in Cotarelo et al. (2021) argue that in the BOPS channel, customers feel that they will get the product faster because the product can be picked up directly at the offline store. In the results of further research, it was found that the customer satisfaction variable has a significant effect on customer loyalty. This result is found in all channel models in omnichannel.

Murfield et al. (2017) aim to examine the quality of logistics services in an omnichannel retailing environment and its influence on achieving customer loyalty and satisfaction. The research, which was conducted on Amazon's Online Mechanical Turk online labor system, carries a conceptual model on the theory of logistics service quality and channel type and its influence on customer satisfaction and customer loyalty. In this study, logistics service quality consists of 3 dimensions, namely timeliness, condition, and availability as independent variables. The dependent variables in this study are customer satisfaction, customer loyalty, and channel type as moderating variables. This research was conducted on 2 channel models, namely BSSD and BOPS. This study found that timeliness and availability dimensions in the BOPS channel have significant results on customer satisfaction. Meanwhile, the BSSD model found significant results in the timeliness dimension of customer satisfaction. This result is obtained because timeliness is the most relevant dimension in achieving customer satisfaction (Murfield et al., 2017). The effect of the three dimensions on the logistics service quality variable is considered to have insignificant results on the customer loyalty variable of the two-channel models. The customer satisfaction variable has significant results on customer loyalty. When customers are satisfied, customers tend to be loyal to the company. The last research result is that there is an insignificant result on channel type as a moderating variable on the logistics service quality variable.

A study conducted by Cotarelo et al. (2021) on the conditions dimension of the logistics service quality variable, obtained insignificant results on the effect on the customer satisfaction variable. The insignificant results in the conditions dimension are because the conditions dimension in the logistics service quality variable is not the main dimension that influences the achievement of customer satisfaction in an omnichannel environment, but the timeliness dimension (Cotarelo et al., 2021). So it can be concluded that the faster the goods arrive at the customer's hands, the more satisfied the customer will feel. Meanwhile, in research conducted by Murfield et al. (2017) the conditions dimension in the logistics service quality variable has positive significant results on the influence on customer satisfaction. This significant influence is because there is a uniqueness in obtaining satisfaction with omnichannel customers which is characterized by various considerations related to the dimensions of logistics service quality, one of which is the conditions dimension (Murfield et al., 2017). When the condition of the goods arrives in accordance with customer expectations, this will affect the level of satisfaction that customers have.

The results of research by Cotarelo et al. (2021) on the availability dimension in the logistics service quality variable obtained positive significant results on the influence on customer loyalty. This is because in omnichannel, especially the BOPS channel model, customers feel that they can get the product faster because the product can be taken directly at the offline store (Beckwith, 2017; Cotarelo et al., 2021). Thus, the availability of products in offline stores will speed up customers in receiving the desired product. Meanwhile, the results of Murfield et al.'s research (2017) on the availability component have insignificant results on the influence on customer loyalty variables. The conditions dimension is said to have an insignificant effect because in this study it was found that the conditions dimension in the BOPS channel model had a weak influence on achieving customer loyalty (Murfield et al., 2017). The weak influence is because the main goal of customers on omnichannel is related to the timeliness of goods arriving (Murfield et al., 2017). Based on the research gap obtained in the two research results, this study wants to continue and analyze the differences in the results in the above research into a study on the effect of logistics service quality on customer satisfaction and customer loyalty in an omnichannel retailing environment. From the explanation above, the hypothesis formed is as follows:

H1. Customer perceptions of logistics service quality (timeliness, availability, conditions, return) positively affect customer satisfaction in an omnichannel environment.

- H2. Customer perceptions of logistics service quality (timeliness, availability, conditions, return) positively influence customer loyalty in an omnichannel environment.
 - H3. Customer satisfaction has a positive effect on customer loyalty in an omnichannel environment.

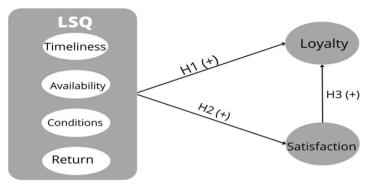


Figure 1. Research Model Source: (Cotarelo et al., 2021)

Research method

This study adopts a causal research design to examine the hypothesized relationships among the variables. Employing a quantitative approach, primary data were collected via electronically distributed questionnaires. All constructs—logistics service quality, customer satisfaction, and customer loyalty—were measured using five-point Likert scales (1 = strongly disagree; 5 = strongly agree).

In the logistics service quality, customer satisfaction, and customer loyalty variables in this study, using the Likert scale measurement type. A score of 1 to 5 is a measurement scale that displays the score related to the research object given by the respondent in assessing the questionnaire given. When the respondent strongly disagrees with the statement attached to the questionnaire, the score given will be smaller (1). Meanwhile, when the respondent feels strongly agrees, the score given will be greater (5).

The target population used based on research is Alfamart customers who have shopping experience in the BOPS channel model through Alfagift. This research raises the BOPS channel model because through this channel customers feel they can get products faster so that products can be picked up directly at offline stores (Beckwith, 2017; Cotarelo et al., 2021). Therefore, the availability of products in offline stores will speed up customers receiving the desired product. Alfamart customers who are the target population in this study, have characteristics such as having shopped at Alfamart in the Buy Online Pick-up in Store (BOPS) channel model through Alfagift at least 2 times during the last year, at least 18 years old, at least a high school education level / equivalent, and domiciled in Indonesia.

Finally, a non-probability purposive sampling method was applied, yielding 250 respondents. Determination of the number of respondents is based on Hair et al. (2010) which states that if a model has ≤ 7 constructs, then the minimum number of samples that must be taken is 150 respondents. Following the characteristics of the target population in this study, the sample will be taken from respondents who live in Indonesia. Collected data are therefore analyzed with Partial-Least Squares Structural Equation Modeling (PLS-SEM).

Findings

Table 1 below will be presented data related to the description of respondents who participated in this study.

Table 1. Respondent Demographic Data

No.	Domicile	Number of Respondents	Percentage (%)		
1	East Java	123	49,2%		
2	Bali	113	45,2%		
3	DKI Jakarta	10	4%		
4	West Java	3	1,2%		
5	East Nusa Tenggara	1	0,4%		
Total		250	100%		
No.	Age	Number of Respondents	Percentage (%)		
1	18 - 25 years	210	84%		
2	26 - 33 years old	29	11,6 %		
3	34 - 41 years old	9	3,6 %		
4	> 42 years	2	0,8%		
Total		250	100%		
No.	Educational Background	Number of Respondents	Percentage (%)		
1	High School / Vocational School	158	63,2%		
2	Diploma	20	8%		
3	Bachelor	chelor 70			
4	Master	2	0,8%		
Total		250	100%		
No.	Main Job	Number of Respondents	Percentage (%)		
1	Student	151	60,4%		
2	Public Servant	10	4%		
3	Private	89	35,6%		
Total		250	100%		
No.	Gender	Number of Respondents	Percentage (%)		
1	Female	137	54,8%		
2	Male	113	45,2%		
Total		250	100%		
No.	Reasons for Using the Service	Number of Respondents	Percentage (%)		
1	Facilities services that offer Various	21	8,4%		
2	Ordered goods are fulfilled with a fast	72	28,8%		
3	Variety of goods sold	122	48,8 %		
4	The condition of the goods is always in good condition both	25	10%		
5	Ease of in-return Item	10	4%		
Total		250	100%		

No.	Frequency of Using the Service	Number of Respondents	Percentage (%)
1	1 time	8	3,2%
2	2 - 5 times	176	70,4%
3	>5 times	66	26,4%
Total		250	100%

The next stage involves measuring the model used in this study. In terms of data processing techniques, the initial step taken is to measure the outer model. Internal consistency, convergent validity, and discriminant validity are the measurement models employed to assess the outer model, following Hair et al. (2019)'s recommendation. In this study, Cronbach's alpha and composite reliability are used to evaluate the internal consistency of the constructs. These indicators serve as statistical measures to evaluate the reliability, or internal consistency, of a set of items within a test or scale. The results yield values exceeding 0.70 for both Cronbach's alpha and Composite Reliability, indicating that the constructs are reliable (Hair et al., 2019).

Assessing convergent validity, all indicators demonstrate an outer loading value greater than 0.70, specifically ranging from 0.703 to 0.898, surpassing the standard cut-off value of 0.7 (Hair et al., 2019). Furthermore, this study also employs the Average Variance Extracted (AVE) to evaluate convergent validity. As shown in the tables, the AVE values for the logistics service quality variable dimensions of timeliness, availability, conditions, and returns exceed the standard cut-off value of 0.5 (Hair et al., 2019).

Lastly, this study examines the discriminant validity of the constructs. The Fornell-Larcker criterion, cross-loadings, and HTMT are standard measures for assessing discriminant validity in PLS-SEM studies (Hair et al., 2019). Table 2 presents the Fornell-Larcker values. Based on this table, it can be observed that for the logistics service quality dimensions of timeliness, availability, conditions, and returns, as well as the customer satisfaction and customer loyalty variables, the correlation values among the latent variables are higher than the respective \sqrt{AVE} values (Hair et al., 2019). Therefore, according to the Fornell-Larcker criteria, it can be concluded that the indicators in these variables form a robust model. Table 3 shows the cross-loading values, indicating that the logistics service quality dimensions and the customer satisfaction and customer loyalty variables all have cross-loadings greater than 0.70. Consequently, it can be concluded that the indicators in these variables are valid. Furthermore, based on Table 4, the logistics service quality dimensions (timeliness, availability, conditions, and returns), as well as customer satisfaction and customer loyalty, have HTMT ratio values below 0.9, meeting the recommended standard (Henseler et al., 2015). Consequently, it can be concluded that the constructs in these variables exhibit a high level of discriminant validity. In summary, all measures have satisfied the standard assessments for validity and reliability of the constructs, thereby allowing the data analysis to proceed.

Table 2. Fornell-Lacker value

	Availability	Conditions	Loyalty	Return	Satisfaction	Timeliness
Availability	0,781					
Conditions	0,332	0,851				
Loyalty	0,472	0,230	0,736			

Return	0,193	0,003	0,109	0,816		
Satisfaction	0,128	0,245	0,275	0,009	0,789	
Timeliness	0,244	0,382	0,232	-0,031	0,590	0,826

Table 3. Cross Loading

	Availability	Conditions	Customer Loyalty	Return	Customer Satisfaction	Timeliness
A1	0,779	0,214	0,353	0,176	0,041	0,183
A2	0,727	0,193	0,324	0,085	0,101	0,208
A3	0,812	0,265	0,386	0,199	0,126	0,169
A4	0,803	0,345	0,404	0,139	0,124	0,204
C1	0,466	0,815	0,271	0,025	0,146	0,241
C2	0,185	0,840	0,101	0,022	0,203	0,340
СЗ	0,185	0,898	0,193	-0,029	0,270	0,393
L1	0,414	0,105	0,739	0,116	0,089	0,062
L2	0,369	0,158	0,754	0,129	0,219	0,167
L3	0,261	0,170	0,705	0,049	0,253	0,157
L4	0,283	0,235	0,709	0,028	0,224	0,283
L5	0,262	0,166	0,703	0,122	0,212	0,192
L6	0,447	0,191	0,802	0,043	0,229	0,182
R1	0,136	0,011	0,051	0,768	-0,015	0,004
R2	0,190	-0,015	0,117	0,888	0,006	-0,053
R3	0,133	0,024	0,076	0,785	0,024	-0,003
S1	0,074	0,120	0,154	-0,043	0,728	0,382
S2	0,053	0,164	0,200	0,019	0,860	0,496
S3	0,099	0,233	0,223	-0,032	0,776	0,543
S4	0,178	0,242	0,281	0,083	0,789	0,415
T1	0,263	0,455	0,159	-0,012	0,431	0,824
T2	0,266	0,344	0,251	-0,037	0,338	0,774
Т3	0,121	0,206	0,181	-0,028	0,629	0,876

Table 4. Heterotrait-Monotrait Ratio (HTMT) values

	Availability	Conditions	Loyalty	Return	Satisfaction	Timeliness
Availability						
Conditions	0,402					

Loyalty	0,566	0,276				
Return	0,237	0,062	0,138			
Satisfaction	0,162	0,294	0,337	0,064		
Timeliness	0,336	0,509	0,301	0,053	0,706	

Table 5 presents data related to the R-square test results. Based on the table, it can be seen that the customer satisfaction variable has an R-square value of 0.350 or 35%. Therefore, it can be said that the customer satisfaction variable is at a moderate value in Goodness of Fit (Gof) (Ghozali & Latan, 2015). Based on the results obtained, it can be concluded that the customer satisfaction variable can explain the logistics service quality variable dimensions of timeliness, availability, conditions, and return by 35%. Meanwhile, the customer loyalty variable has an R-square value of 0.271 or 27.1%. Therefore, it can be said that the customer loyalty variable is at a moderate value in Goodness of Fit (Gof) (Ghozali & Latan, 2015). Based on the results obtained, it can be concluded that the customer loyalty variable can explain the logistics service quality variable dimensions of timeliness, availability, conditions, and return by 27.1%.

Table 5. R-Square Results

	R-square	Adjusted R-square	Description
Customer Satisfaction	0,350	0,340	Moderate
Customer Loyalty	0,271	0,256	Moderate

Q-square commonly referred to as predictive relevance value generally utilizes a blindfolding procedure to determine the good or bad value of a model (Hair et al., 2011). When the observation value on the Q-square is good, the Q-square value is > 0 and < 1. So that the Q-square which has a value close to 1, then indicates the better the model contained in the study.

Table 6. Q-Square Results

022		
SSO	SSE	² Q (= 1-SSE/SSO)
1000,000	1000,000	
750,000	750,000	
1500,000	1302,463	0,132
750,000	750,000	
1000,000	797,182	0,203
750,000	750,000	
	1000,000 750,000 1500,000 750,000 1000,000	1000,000 1000,000 750,000 750,000 1500,000 1302,463 750,000 750,000 1000,000 797,182

Table 6 presents data related to the Q-square test results. Based on the table, it can be seen that the customer satisfaction variable has a Q-square value of 0.203. Therefore, it can be said that the customer satisfaction variable has a good value on Q-square or has a relevant predictive value. Meanwhile, the customer loyalty variable has a Q-square value of 0.132. So, it can also be concluded that the customer loyalty variable has a good value on the Q-square or has a relevant predictive value.

The last step will be taken after model measurement in this study, and then enters the hypothesis testing stage between variables. Murniati and Beik (2014) argue that when the T-statistic has a value of

1.96 with α 5%, the hypothesis will be accepted. In addition, when the probability has p values <0.05, it indicates that the hypothesis will be accepted. Furthermore, the data below will present figures and tables related to the results of hypothesis testing in this study.

Figure 2. Inner Model

Figure 2. presents data related to the results of hypothesis testing obtained from the bootstrapping process. The criterion used is by looking at the comparison of the value in t-statistics with the value obtained in t-statistics.t-critical value (t-statistics > t-critical value) Another condition for accepting or rejecting the hypothesis is also assessed based on p-values < 0.05. A clear explanation of the results of hypothesis testing is presented in Table 7.

Table 7. Hypothesis Testing Results

	Hypothesis	Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values	Description
+	LSQ_Timeliness → CS	0,587	0,587	0,071	8,218	0,000	Supported
-	LSQ_Availability →CS	-0,032	-0,031	0,062	0,518	0,604	No Supported
+	LSQ_Conditions → CS	0,031	0,046	0,077	0,407	0,684	No Supported
+	LSQ_Return→ CS	0,033	0,029	0,060	0,550	0,582	No Supported
-	LSQ_Timeliness →CL	-0,018	-0,017	0,096	0,185	0,853	No Supported

	Hypothesis	Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values	Description
+	LSQ_Availability →CL	0,430	0,434	0,082	5,227	0,000	Supported
+	LSQ_Conditions → CL	0,040	0,039	0,086	0,469	0,640	No Supported
+	LSQ_Return→ CL	0,023	0,033	0,075	0,310	0,757	No Supported
+	$CS \rightarrow CL$	0,220	0,209	0,089	2,483	0,013	Supported

For H1 which discusses the effect of logistics service quality variables (timeliness, availability, conditions & return) on customer satisfaction at Alfamart through Alfagift, it is found that only the timeliness dimension in the logistics service quality variable has a positive significant relationship to the customer satisfaction variable. Based on the analysis in Table 7, it can be seen that the timeliness dimension in logistics service quality on customer satisfaction has a positive path coefficient of 0.587 and P Values of ***. The results obtained from testing this hypothesis have similarities with Cotarelo et al.'s research (2021). In the results of their research, Cotarelo et al. (2021) state that there is a positive significant effect in the timeliness dimension of the logistics service quality variable on customer satisfaction in the Buy Online Pick-up in Store (BOPS) scenario.

For H2, which discusses the effect of logistics service quality variables (timeliness, availability, conditions & return) on customer loyalty at Alfamart through Alfagift, it is found that only the availability dimension in the logistics service quality variable has a positive significant relationship with the customer satisfaction variable. Based on the analysis in Table 7, it can be seen that the availability dimension in logistics service quality on customer loyalty has a positive path coefficient of 0.430 and P Values of ***. The results obtained from testing this hypothesis have similarities with Cotarelo et al.'s research (2021). In the results of their research, Cotarelo et al. (2021) state that there is a positive significant effect in the availability dimension of the logistics service quality variable on customer loyalty in the Buy Online Pickup in Store (BOPS) scenario.

For H3, which discusses the effect of customer satisfaction variables on customer loyalty at Alfamart through Alfagift, it is found that only the availability dimension in the logistics service quality variable has a positive significant relationship to the customer satisfaction variable. Based on the analysis in Table 7, it can be witnessed that the customer satisfaction variable on customer loyalty has a positive path coefficient of 0.220 and P values of 0.013. The results obtained from testing this hypothesis have similarities with Cotarelo et al.'s research (2021). In the results of their research, Cotarelo et al. (2021) state that there is a positive significant effect on the customer satisfaction variable on customer loyalty in the Buy Online Pick-up in Store (BOPS) scenario.

Discussions

This research contributes to the limited body of literature on logistics service quality within omnichannel environments, particularly in the context of a geographically complex country like Indonesia. By addressing challenges and leveraging opportunities in logistics integration, companies such as Alfamart can optimize their service quality, thereby enhancing customer experiences and securing long-term loyalty. These insights underscore the strategic importance of investing in logistics capabilities to maintain competitive advantage in the evolving retail landscape.

seaism.org 55

The findings reveal that the timeliness of logistics services significantly enhances customer satisfaction, demonstrating the importance of accurate and reliable delivery in meeting customer expectations. The availability dimension has also been found to have a positive significant relationship to customer loyalty. Therefore, it can be concluded that information related to the availability of goods greatly supports the quality of logistics services, especially in the availability dimension provided by Alfamart to customers. Alfamart's availability in fulfilling the goods needed by customers certainly influences customer loyalty.

In addition, customer satisfaction has been proven to have a significant positive relationship with customer loyalty. Based on these results, it can be concluded that when Alfamart customers who use BOPS services feel their expectations or expectations in using the BOPS service are met. Then indirectly this causes satisfaction with the customer or the achievement of customer satisfaction. When Alfamart customers are satisfied, then based on the results obtained in the study, it shows that customers will tend to be loyal to shopping at Alfamart. Based on this description, it can be concluded that the findings of this study are consistent with the results of research conducted by Cotarelo et al. (2021).

Conclusion

This study investigates the role of logistics service quality in enhancing customer satisfaction and loyalty within omnichannel retail, focusing on Alfamart's Buy Online Pick-Up in Store (BOPS) service through the Alfagift application. The findings demonstrate that timeliness significantly improves customer satisfaction, while product availability is crucial for fostering loyalty. These results highlight the importance of accurate delivery and effective inventory management in meeting customer expectations.

Future studies could explore other retail settings to compare findings and broaden insights. Conducting similar research in different countries is recommended to account for regional customer variations. This study's focus on the Buy Online Pick-Up in Store (BOPS) channel presents a limitation, as it excludes other channels like Buy Online Ship Direct (BOSD) and Buy in Store Ship Direct (BSSD). Future research is encouraged to investigate these channels to provide comparative analyses and a more comprehensive understanding of omnichannel logistics service quality.

References

- Agustian, I., Saputra, H. E., & Imanda, A. (2019). The influence of management information systems on improving service quality at pt. jasaraharja putra Bengkulu branch. Professional: Journal of Communication and Public Administration, 6(1). https://doi.org/10.37676/professional.v6i1.837.Diakses on June 1, 2022.
- Akhmad Greece. (2017). Development of Indonesia's Logistics Business. Supplychain Article. https://supplychainindonesia.com/perkembangan-bisnis-logistics-indonesia/. Accessed on June 6, 2022.
- Anam, K. (2021). Targeting Millennials, Alfamart Develops Alfagift. Cmbcindonesia.Com. https://www.cnbcindonesia.com/news/2021113017391 5-4-295590/target-millennial-alfamart-develops-alfagift.Accessed on March 5, 2022.
- Beck, N., & Rygl, D. (2015). Categorization of multiple channel retailing in Multi-, Cross-, and Omni-Channel Retailing for retailers and retailing. Journal of Retailing and Consumer Services, 27, 170-178. https://doi.org/10.1016/j.jretconser.2015.08.001.
- CEIC. (2022). Indonesia Retail Sales Growth. Ceicdata.Com. https://www.ceicdata.com/id/indicator/indonesia/retail-sales- growth#:~:text=Indonesia Retail Sales Growth reported,-01%2C with 133 observations.Accessed on March 4, 2022.
- Cotarelo, M., Calderon, H., & Fayos, T. (2021). A further approach in omnichannel LSQ, satisfaction and customer loyalty. International Journal of Retail & Distribution Management, 49(8), 1-16. https://doi.org/doi.org/10.1108/IJRDM-01-2020-0013.
- Ghozali, I. (2011). Structural Equation Modeling Alternative Methods with Partial Least Square (PLS) 3rd Edition,

seaism.org 56

- Diponegoro University Publishing Agency. Semarang.
- Ghozali, I. (2014). SEM Alternative Methods using Partial Least Squares (PLS). Semarang: Diponegoro University Publishing Agency.
- Ghozali, I., & Latan, H. (2015). Partial least squares concepts, techniques and applications using the smartpls 3.0 program for empirical research. Semarang: UNDIP Publishing Agency.
- Griffis, S. E., Rao, S., Goldsby, T. J., & Niranjan, T. T. (2012). The customer consequences of returns in online retailing:
 An empirical analysis. Journal of Operations Management, 30(4), 282-294. https://doi. org/10.1016/j.jom.201 2.02.002.
- Hair, Joe F, Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202.
- Hair, Joseph F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2017). Advanced Issues in Partial Least Squares Structural Equation Modeling. Sage Publications Sage CA: Los Angeles, CA.
- Hair, Joseph F, Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203.
- Hübner, A., Wollenburg, J., & Holzapfel, A. (2016). Retail logistics in the transition from multi-channel to omnichannel. International Journal of Physical Distribution & Logistics Management. https://doi. org/10.1108/IJPDLM-08-2015-0179.
- Ishfaq, R., Defee, C. C., Gibson, B. J., & Raja, U. (2016). Realignment of the physical distribution process in omnichannel fulfillment. International Journal of Physical Distribution & Logistics Management. https://doi.org/10.1108/IJPDLM-02-2015-0032.
- Joseph F. Hair, E. al. (2010). Multivariate Data Analysis 7th Edition. Pearson Education.
- Latan, H., & Ghozali, I. (2012). Partial least Squares: Concept and application path modeling using XLSTAT-PLS program for empirical research. BP UNDIP.
- Mentzer, J. T., Flint, D. J., & Hult, G. T. M. (2001). Logistics service quality as a segment-customized process. Journal of Marketing, 65(4), 82-104. https://doi.org/10.1509/jmkg.65.4.82.18390.
- Mentzer, J. T., Gomes, R., & Krapfel, R. E. (1989). Physical distribution service: a fundamental marketing concept? Journal of the Academy of Marketing Science, 17(1), 53-62. https://doi.org/10.1007/BF02726354.
- Micu, A., Aivaz, K., & Capatina, A. (2013). Implications of logistic service quality on the satisfaction level and retention rate of an e-commerce retailer's customers. Economic Computation & Economic Cybernetics Studies & Research, 47(2), 147-155.
- Mollenkopf, D. A., Frankel, R., & Russo, I. (2011). Creating value through returns management: Exploring the marketing-operations interface. Journal of Operations Management, 29(5), 391-403. https://doi.org/10.1016/j.jom.2010.11.004.
- Murfield, M., Boone, C. A., Rutner, P., & Thomas, R. (2017). Investigating logistics service quality in omni-channel retailing. International Journal of Physical Distribution & Logistics Management. http://dx.doi.org/10.1108/IJPDLM-06-2016-0161.
- Murniati, R., & Beik, I. S. (2014). The effect of zakat on human development index and poverty level of mustahik: Case study of BAZNAS utilization in Bogor city. Al-Muzara'ah, 2(2), 135-149. https://doi.org/org/10.29244/jam.2.2.135-149.
- Prasetyo Tedjakusuma, A., Delananda, A., & Andajani, E. (2020). The Effect of Logistics Service Quality on Customer Satisfaction and Customer Loyalty in the Retail Industry in Indonesia. KELUWIH: Journal of Social and Humanities, 1(1), 21-29. https://doi.org/10.24123/soshum.v1i1.2669.
- Pratama, A. (2021). Indomaret Parent Company (DNET)'s Revenue and Profit Moncer in the Second Quarter of 2021. Idxchannel.Com. https://www.idxchannel.com/market-news/revenue-and-profit-indomaret-parent-company-dnet-moncer-in-quarter-ii-2021#:~:text=In the financial statements as of 30, 2020 amounting to IDR 32%2C34 billion.Accessed on March 5, 2022.
- Purwanti, T. (2021). Alfagift is the Best Omnichannel Solution for RetailConsumer. Cnbcindonesia.Com. https://www.cnbcindonesia.com/market/20211130183023-17-295609/alfagift-jadi-best-omnichannel-solution-for-retail-consumer.Accessed on March 7, 2022.
- Rabbi, C. P. A. (2021). Retail Business is Believed to Recover during Lebaran Next Year. Katadata.Co.Id. https://katadata.co.id/maesaroh/berita/61c37a6072357/bisnis-retail-diyakini-year.Accessed on March 4, 2022.
- Rahayu, S., Widjaja, F. N., & Sudartan, A. S. (2013). Logistic Service Quality in PT Mentari Sejati Perkasa (MSP)

- Surabaya. 10th UBAYA INTERNATIONAL ANNUAL SYMPOSIUM ON MANAGEMENT, 14571473. http://repository. ubaya.ac.id/id/eprint/7122
- Ringle, C. M., Wende, S., and Becker, J.-M. (2015). SmartPLS 3. http://www.smartpls.com.
- Setiaji, H. (2022). Rise! Retail Sales on the Rise, Indonesia's Economy Ready to Surge. CNBC Indonesia. https://www.cnbcindonesia.com/news/20220111100806-4-306268/bangkit-sales-retail-nanjanjak-ekonomi-ri-ready-melesat. Accessed on March 4, 2022.
- Sharma, M., Gupta, M., & Joshi, S. (2019). Adoption barriers in engaging young consumers in the Omni-channel retailing. Young Consumers. Vol. 21 No. 2, pp. 193-210. https://doi.org/10.1108/YC-02-2019-0953.
- Sugiyono, P. D. (2019). Educational Research Methods (Quantitative, Qualitative, Combination, R&d and Educational Research). Education Research Methods.
- Suharsimi, A. (2010). Research Procedures A Practical Approach (p. 267). Rineka Cipta.
- Verhoef, P. C., Kannan, P. K., & Inman, J. J. (2015). From multi-channel retailing to omni-channel retailing: introduction to the special issue on multi-channel retailing. Journal of Retailing, 91(2), 174-181. https://doi.org/10.1016/j. jretai.2015.02.005.
- Xing, Y., Grant, D. B., McKinnon, A. C., & Fernie, J. (2010). Physical distribution service quality in online retailing. International Journal of Physical Distribution & Logistics Management. https://doi.org/10.1108/09600031011052859.
- Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2013). Business Research Methods (Ninth). Erin Joyner.

seaism.org 58